THERMAL STABILITY OF CONTINUOUS MEDIA WITH
VARIABLE THERMOPHYSICAL CHARACTERISTICS

T. A. Bodnar' UDC 536.533

A continuous medium with distributed h
tics may be located in a multitude of
nts of equilibr;um or oscillatory pro
ed by the medium an analysis has been perform
f source intensity, thermoph 1
n. The method of stabili
em of infinite dimension s
ns. We will present results of calcule
finite length and their stability.
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Formulation of the Problem and Method of Solution. A continuous medium with distri-
1 glons in space bounded by a parallelepiped located

etween two coaxial circular LYLLHuer, closed b

interacts with the bdlIUUUdlug meulum.
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Here x = (x%,, X5, X3); O, Xj, T are dimensionless temperature, coordinate i, and time; hj
are metric coefficients; @(8) is the source function; @,(x) is a function of coordinate;
%(0) = x(0)x(0) is the ratio of the thermal diffusivity coefficients; Hij(6, #8/3x;) is the
boundary condition of the third kind of point j and coordinate i.

It is assumed that 09(0)/90 > 0, while the functions ¢(0), #(@) can be represented in
the form of series
?O)
%(@) __i;0

a;

bi

i (1.4)

(b; are constants, aj are functions of the parameter u, defined in t
Then with consideration of Eq. (1.4), Eg. (1.1) takes on the form

40/t = G(O, p, A) = L, 0 + G1(0, p, A), (1.5)

where
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A is found from the relationship G;(0, 0, A) = @+ ¢ ().

Ii accordance with the theory uf the central manifold {2] the infinite-dimensional prob-
lem of Egs. {(1.2) and (1.5) at A = 0 can be reduced to a space of finite dimensions without
loss of ilfornatlon relative to btabl 1ty of the solutions. he dimensionality of the prob-
lem can be reduced by constructing one manifold from the set of central manifolds, or by the

projection method of [3, 4], the latter method being extensible to A # O.

The sequence of operations in the projection method is to initially construct the func-
tional space of the operator L, and to determine the stability of the zeroth solution. Then
the solutions of bifurcation problem (1.5) (4 = 0) and the problem of Eq. (1.5) with the
defect (A # 0) that destroys the bifurcation are projected into this space and the stability
of their solutions determined.

The possibility of expanding the projection method to the case G,(0, u, A) # 0 follows
from the results of [2].
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nditions (1.2}, (1.3) can be carried cut in
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product of the vectors Yij’ ems p(x) is a weight function,
s 7)) . The space of the vectors
is a Gilbert space with scalar product «yu»ymL(yn"ymﬂ>“<yn»ym>
(s Yomy (yk“ are eigenvectors of the conjugate operator L,%).

Before analyzing the bifurcation solution of Eq. (1.5), we should make clear that the
analysis results are valid only for the case where the algebraic multiplicity factor of the
eigenvalues oy dces not exceed the geometric, although the projection method is also appli-
cable to that case.

3. Bifurcation Solution. The

stability of the bifurcation solution can be carried out
in a functional space for which N = 2,

The solution of Eq. (1.5) with conditions (1.2), (1.3) for A = Ocan be found in the
form of series

WL
pi & ol (3.1)

where € = <(@, 8), {y,1, y21)> is the amplitude; @

lp are coefficients of the expansion
requiring determination.

ne
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Substituting Eq. (3.1) in Eq. (l.5) and equating terms with independent powers of ¢
leads to the equations
L®, = (3.2)
9°G (0,0,0
L8, + 24, 22 26, 4 260,00 g (3.3)
a8
plus equations for higher powers of €
It follows directly from Eq. (3.2) that the solution can be any linear combination of
the vectors Vi1, Vois ©; = ¥11 + $¥21, where ¢ is a problem parameter requiring determination.
&
Equation (3.3) is soluble when and only when for k = 1, 2 the conditions <L¢0,, §k1> =
0 are satisfied, these following from the Fredholm alternative theorvem. Hence it follows .
that
/ \ 5G(O 0,0) ~2 —*
2“‘1\0 61’ yhl/ 582 @ =07 k=172- (3.,{'}
Tle presence of two independent variables y;, § guarantees the existence of a solution
to system (3.4). Substitution in these equations of expressions for 0, v k=1, 2)
yields two equations of conic sections in the plane (uy, )
gi(py: §) = cp? 1+ g T s + egly 05 = 0; (3.5)
gapy, B) = Co? T Coa + CogtyP + Coyity + 05 = 0. (3.6)
Here
BGOOO) G (0,0,0) = — ==
€1y = 0’5< ( Yaur y11> Ciz -—< 767 Y11Y21- yn
0L, -\ SOLy = =\
=\ au Yor» bu s G4 =\ Yuns Yu
826 (0,0,0) =2 —* %G (0,0,0) = ==
15 =0, <_“0—82— Y11» !/11> 1 = 0,9 <T Ya10 Y21
360, 0,0 = - SOLg — =\
Cyp = < 767 Y11¥Ya1» 921 =\ 921, 921/’
SOLy = =\ #*G (0, 0, 0) —x
Coy = \ au Yi1» .1/21/, €p5 = 0,9 <T Y110 Y21
In view of the transforms of Eq. {(2.1) cis = c,4 = 0, and if Egs. (3.5), (3.6) are not
degenerate then Eq. (3.5) is always a parabola and Eq./(3.6) is always a hyperbola. The
points of intersection of curves {3.5), (3 6) (uin), ${n)} (n = 1-3) in the plane (4., ¥)
are solutions of Eq. (3.3). Depending on the sign of the discriminant of the cubic equation
equivalent to system (3.5), (3.6)
$° + By? + By + By =05 7)
(3.7)
(By=1, B,= (cra— C14Ca1C030 ) €11 B, = (€15 — 14622633 ) ity By =—¢u CosC23'¢T1 )5 the system of Egs
(3.5), (3.6) has either three real solutioms, or one real, and two complex-conjugate. If
the discriminant is equal to zero, then two or all three of the real roots coincide
The stability of the §o%ution of Eq. {1.5) must be analyzed at each intersection point
of curves (3.5), (3.6) (u,\n/, w(r), n = 1-3. To do this it is necessary to write the
functions gi(uy, ¢) (i =1, 2) in the form of functions of the parameter . Combining Egs.
(3.1), (3.5), (3.6) and using the normalization condition £ = 1, we write Egs. (3.5), (3.6)
in the form
gi () = 12 (cap®ua ™+ o+ cisppy '+ cigli gy ") =0, i =1, 2. (3.8)
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Lyapunov's theorem on stability in the first approximation [6] st hat Eq. (i1.5) is

stable, if the real portious of the eigenvalues of the Jacobi matrix

Gy 4y - - - _ — - ~ -

I=1 " 1 (e = 0g,(won ", @iy = dgy (/0 (Wui"), apy = 08, (W/op1", @y = 92, ()0 (pur))

21
are negative. A strict proof of this assertion with consideration of attraction of the
solution from R*® to R? was presented in [3, 7].

5(1)) for small 1 we have det I = p?det I(p1<n>

w(n)) + O{p i, we write the stability condition for steady state equilibrium

max (us{™, usi™) <0, det 7 (u{™, ™) > 0; (3.9)

max (pRe s, wResy”) <0,

b AY
[Re(al® + o) | >1(a2 + B2 Y028 cos aretg oy By |- (3.10)

he matrix I(u,(®), MCHH

o = a7 4 0= (Roof) — 2 — (I (o =) +
+ 4Realy Realy — 4 Imal} Im ai};

Bn = 2Re(alP —al3) Tm (a{P — aly’) + 4Realy Imaly + 4 Realy Imaly.

intersection of curves (3.5), (3.4) in
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If det I, = G, then at the point of intersection of curves (3.5), (3.6) a common tangent
exists and higher order approaches are required to study stability. In the presence of
only one real root of Eq. (3.7) the intersection is always abrupt, since if the curves are
. 1
L

tangent we already have two real roots.

ility to one side of

Common to all real solutions is instabilit“ 1f det Ic< tabi
> i : ectiou Ou t"le arcs u‘F the

the point u = 0 if det I

conic solutions (3.5},

r any u, while the other
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{3.10) max{u Re b1\1>, i Re s, n)) = ¢ (the null being simple), at w ifurcation of

generation of the limiting cycle occurs — Hopf bifurcation [2].

As an example we will consider
0 <x, <2w, 0 <x3 <r. Th
conditions of Eq. (1.3) can

[\

cylinder occupying the region 0 < 2,
e nt 1 X4, Ny = 1. The boundary
be written as

20 00
a—x‘l‘ + “11® Ix1==o =0, 'a—" + “129 lxl_—.l =0,
B fxjm0 < o, 7 h + 30 fe =r = 0.

With such boundary conditions the eigenvalues of the operator Ly are doubled. The
maximum eigenvalue and the corresponding vectors are equal to o; = a; — bgAZ, AZ = n? +
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2..=2 — Wy ae—1 i - — - -
vir®2, yi, = Io(vyr7'x,) sin miXy, ¥o1 = Ig(vyrTixg)cos nyx,, where Ij(t,r 'x;) are Bessel

functions of the first sort and order i; n,;,v,; are the smallest positive roots of the
equations

ctg ﬂll =

ot %y ' '
@, —a, M+ n, ) Tl y (Vi) — v, 1, (v;) = 0.

12

The orthogonalized vectors of the operators Lys Lp* corresponding to o; have the form

Y1 = Yu» !—/21 = Y — Yor gu z3) ”511“_1!/11,

LA IR R P

(x5 = p(x) is the weight function mentioned above).

Data for calculation were chosen with the goal of completely encompassing pos

sible
thermal states of the cylinder. For the source function the expression of [8] 9(6) =

exp(@(1 + PO)') was used, with the first three terms in its expansion being a, = 1, @; =

ju-

b

a, = 0.5 — p (where B is a parameter). Calculations performed for various values of £, b,y

@

for fixed a,; = 1, Gy, = dz, = 0, B =0, by = 1 yielded results valid for any r.

1. b, = 0.1, £ = 1.1. The solutions of Egs. (3.5), (3.6) are points (pd¥; ) = (—0.783;
— 14.556), (pn®; $*)=(8.18 - 107* —0.5674; 0.106 4+1.860i). The third point is the complex conjugate of
the second, so will not be considered further. These points correspond to eigenvalues of
the Jacobs matrix (s s{¥) = (7.80 - 107% — 2.521),(s%; &) = (9.93 - 107* — 0.193;; — 0.283 — 0.154i),
which indicates that all three solutions are unstable to either side of the point u = 0.

2. b; = 0.1, £ = 1.267. We have one real and two complex solutions (p“) (”)==(——1AO3
—11.154), (u®; ) = (5.27 - 107% — 0.3367; — 4.27 - 107* + 1.729{), corresponding to (s o) =(0.178; — 1.771),
(5@ ) = (—0.422; —0.247 — 0.1677). . The real solution is unstable for any y, while the
periodic solution is a limiting cycle (Fig. 1, curve 1).

3., by = 0.1, £ = 1.5. The solutions (u{; ¢*)=(— 1382 —8.689), (1 $®) = (—1.20-107°—
0.403i; — 0.216 + 1.587i) correspond to (s ") = (0.397; —1.186), (s®; ) =(—1.02-107°—0.229;; —0.338—
7.84.107%). The stationary solution is unstable (Fig. 2, curve 1), while the periodic one
is stable for u > O (Fig. 1, curve 2, Fig. 3, curve 1).

4., b, = 0.1, & = 1.54. A stationary equilibrium point exists (u (M) (1)) = (—1.436;
~8.478) together with oscillatory regimes (p(2); $(2) = (-2.74-1072 = 7.01-10721i; -0.262 +
1.560i). For these (&; i) = (0.451; —1.127), (s sf) = (— 0.2341; —0.366 + 2.25 - 107%), so that

the stationary solution is unstable (Fig. 2, curve 2), and the periodic one is a stable limit-
ing cycle (Fig. 3, curve 2).

5. b, =0.1, £ =1.6. For the solutions (uy®)=(—1582 — 8.280), (w7 +*)—(533-
10~% — 2.55 - 107%; — 0,335 + 1.515i) we have (s(l", s0) = (0.547; — 1.058), (5 5?) = (1.30 - 107" — 0.244i;
_0.406 +1.73-107%). Both regimes (the steady state of Fig. 2, curve 3 and the periodic of
Fig. 3, curve 3) are unstable.

6. b, = 0.1, £ = 2. For the stationary point (u;(*); w(1)) = (=4.043; —13.457) and the
periodic regime (u{; ¢*) = (—0.268 + 0.107;; —0.728 4+ 0.952/) we have (s{?; ) = (3.119; —1.876), (59,
52} = (0.101 — 0.3461; ——0-628+6-48'10_2i). All regimes are unstable. The periodic solution

is shown in Fig. 1 (curve 3).
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7. b, =0.1, £ = 3.5. All three solutions are steady state equilibrium points
(u; ) = (— 16.613; — 18.119), (uf”; v®) = (— 0.387; —0.169), (u®; ) = (—0.409; — 0.335) (Fig. 4a,

b). For these (s; s} = (84.337; — 19.206), (s¥; s{) = (0.571; — 0.618), (s{¥; i) = (1.030; 0.359). The

first two points are unstable for any u, while the third is stable for u < 0. The solutions

for (u,(2); w(2)), (w1 (®); w(3®)) are shown in Fig. 2 (curves 4, 5).
8. b, =0, & =1.5. Of three stationary equilibrium points (u{"; PV) = (1.348;  4.897),
(b @) = (— 1.445; —4475), (u®; @)= (—0.490; —1.139) (Fig. 5) one is stable (s,(?); 5,(2)) =

(0.388; 0.189) for w < O and two are unstable (s V) =1(0.381; —0.411), (s&; &) =(0.326;

— 8.61 - 10“2) for any u. In Figs. 4, 5 curves 1l correspond to Eq. (3.5) and curves 2 to Eq.
(3.6).

4. Isolated Solutions. In the general case, for example, ¢{6@) obeys the Arvehnius law,
the operator G(®, p, A) contains a parameter 4 # 0 which destroys the bifurcation at the
point (:8, W) = 0, 0, so that the solutions which branch at this point decay into isolated

solutions. For A = 0 the solution ® = 0 of the equation G(8, u, 0) = 0 always loses
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stability upon transition of u tHroﬁgh zero. From this, it follows b ! i
? y Hopf's assertion [2
that the point (8, u) = (0, 0) is a double bifurcation point. 2]

2 P B - \ e~ - . . . <
The inequality <3G(0, 0, 0)/3a, ¥E,> #0 (k =1, 2) and the implicit functi
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)
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guarantee the existence of a solution G(®, u, A)
a series in powers of u, €.

f
Twofold differentiation of G(®, 1, A) with respect to u, € at the point (u, €) =

4G (0,0, 0)6%@ 476 (0,0, 0)

86 (0,0,0) *°A
FIS) 582 682

2 {r
61+ ~x gz =0 (4. 1)

8G (0,0, 0) 9°8

9°G (0,0,0) o , 06(0,0,0) A
90 du de 0,

du a8 vt A opds

-+

which together with Egs. (4.1), (4.2) allows finding the first two non-zero terms in the

2 22 TF 2 -
A et (5% (0, 0, 0)/0® it B 0, o776 0,0.0/00010,, 7, ,
2| (06(0,0,0)/0A, 75,y {96 (0,0, 0)/0A, y; )
E=1,2.

, {(1.3), (1.5) in the plane
Y in Eq. (4.3) and application of

o
the normalization condition € = 1 leads to t

1 COon he system
&1 (1 ¥) + A ao + @1 (2), 450> = 0; (4.4)
82 (1) + Aday + 9, (2), y21) = 0, (4.5)

where gi(u,, ¥) (i = 1, 2) are found from Egs. (3.5), (3.6). The coefficients of the cubic
equation equivalent to system (4.4), (4.5) are as follows:

By=— (625 + A <a0 + 0, (), g;1>) 61401_1162—31»
B, = (015 - 01462205—31 -+ A(“o + @, (2), §:1>) vy

(B,, B are the same as in Eq. (3.7)).
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The system of Egs. (4.4), (4.5) does not differ in structure fromEqgs. (3.5), (3.6),
so that the further analysis of stability of the solutions of Eq. (1.5) with conditions (1.2),
(1.3) is analogous to that presented in section 3 for the blfur ation solution. The distri-
bution of real and complex solutions of Eq. (1.5) for A # 0 is of the same form as for 4 = 0,
although not necessarily identical.

Assuming that the pro ltleS of the materi
fied, it makes sense to coubluer boundar
of regulation instruments which allow cont 01 o
medium and their strength as attractors.

1 and the region which it occupies are speci-
io ( .2) and the function @;(x) as types
e distribution of thermal states of the

] ‘<‘.
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[« o}
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h t'?' f

ac rding to the results obtained, the presence of a set of thermal states, both

per dlc, 1u whlch the medium can be found stimulates the thought that uncontrolled
. \
C /

o es) which occur during proce ss"g, storage, and accumulation
of materials in the chenical, atomic, coal, petroleum, and milling industries, etc. may occur
not only because of breaking of rules (metric, mass, temperature, concentration), but also
in a "legal" manner, if such rules are developed without consideration of all possible thermal
states.

LITERATURE CITED

1. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian],
Nauka, Moscow (1966).

2. J. E. Marsden and M. McCracken, Hopf Bifurcation and Its Applications, Springer-
Verlag, New York (1576).

3. G. Ioss and D. Joseph, Elementary Stability and Bifurcation Theory, Springer-Verlag,
New York (1981).

4. D. D. Joseph, Global Stability of Fluid Motions II, Springer-Verlag, New York (1976).

5. T. A. Bondar', "Thermal stability of planar, cylindrical, and spherical c-phase speci-
mens," Fiz. Goreniya Vzryva, No. 3 (1990).

6. B. P. Demidovich, Lectures on the Mathematical Theory of Stability, Nauka, Moscow (1967).

7. T. Kato, Perturbation Theory for Linear Operators, Springer—Verlag, New York {1984).

8. D. A. Frank-Kamenetskii, Diffusion and Heat Transport in Chemical Kinetics [in Russian],
Nauka, Moscow (1967).

349



